

Fourth Semester B.E. Degree Examination, June/July 2018 Control Systems

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Write the differential equations for the mechanical system shown in Fig.Q1(a) and obtain F-V analogy. (06 Marks)

O. Differentiate between open loop control system and closed-loop control system. (06 Marks)
For the rotational system shown in Fig.Q1(c). Draw torque-voltage analogous circuit (04 Marks)

OR

2 a. Reduce the following block diagram of the system shown on Fig.Q2(a) into a single equivalent block diagram by block diagram reduction rules (06 Marks)

b. Find $\frac{C(s)}{R(s)}$ for the following signal flow graph. [Refer Fig.Q2(b)]

(06 Marks)

1 of 3

(04 Marks

Module-2

For the system shown in Fig.Q3(a). Find the: i) system type ii) static error constants kp, k and k_a and iii) the steady state error for an input r(t) = 3 + 2t. (06 Marks

Fig.Q3(a)

- Find the step-response, C(t) for the system described by
- constant, rise time and settling time.

- (05 Marks
- Derive the equation for steady state error of simple closed loop system

A second order system is represented by the transfer function.

$$\frac{Q(s)}{I(s)} = \frac{1}{JS^2 + fS + K}$$

A step input of 10 Nm is applied to the system and the test results are:

- i) maximum overshoot = 6%
- ii) time at peak overshoot = 1sec
- iii) the steady state value of the output is 0.5 radian

Determine the values of J, f and K.

- b. A system has 30% overshoot and settling time of 5 seconds for on unit step inpu Determine: i) The transfer function ii) peak time 't_p' iii) output response (assume e_{ss} as 2%) (06 Marks
- Write the general block diagrams of the following:
 - i) PD type of controller
 - ii) PI type of controller.

(04 Mark::

Module-3
Determine the ranges of 'K' such that the characteristic equation : 5

$$S^3 + 3(K + 1)S^2 + (7K + 5)S + (4K + 7) = 0$$
 has roots more negative than $S = -1$. (06 Marks

b. Check the stability of the given characteristic equation using Routh's method.

$$S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0.$$

(06 Marks

c. Mention few limitations of Routh's criterion.

(04 Marks

OR

- Sketch the complete root locus of system having, G(s)H(s
 - Find whether S = -2 point is on root Consider the system with G(S)H(s) =locus or not using angle condition. (04 Marks)

- The open loop transfer function of a system is $G(s) = \frac{K}{s(1+s)(1+0.1s)}$. Determine the values of K such that i) gain margin = 10 dB ii) phase margin = 24°. Use Bode plot. (10 Marks)
 - Derive the expression for resonant peak 'M_r' and corresponding resonant frequency 'W_r' for (06 Marks) a second-order underdamped system in frequency response analysis.

Sketch the Nyquist plot for a system with the open-loop transfer function: 8

G(s)H(s) =
$$\frac{k(1+0.5s)(1+s)}{(1+10s)(s-1)}$$

Determine the range of values of 'k' for which the system is stable.

Write the polar plot for the following open-loop transfer function:

$$G(S)H(s) = \frac{1}{1+0.1s}$$

Explain Nyquist stability criteria.

Explain spectrum analysis of sampling process.

Explain how zero-order hold is used for signal reconstruction b.

(06 Marks)

(04 Marks)

Find the state-transition matrix for A =

(06 Marks)

Obtain an appropriate state model for a system represented by an electric circuit as shown in 10 Fig.Q10(a).

(06 Marks)

b. A linear time invariant system is characterized by the homogeneous state equation:

$$\begin{bmatrix} \bullet \\ \mathbf{x}_1 \\ \bullet \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Compute the solution of homogeneous equation, assume the initial state vector.

$$X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (06 Marks)

State the properties of state transition matrix. (04 Marks)